
doi: 10.1098/rsta.1997.0079
, 1609-1621355 1997 Phil. Trans. R. Soc. Lond. A

 
C. H. Greene and J. A. Stephens
 
Rydberg states of triatomic hydrogen
 

Email alerting service
 herecorner of the article or click 

Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand

 http://rsta.royalsocietypublishing.org/subscriptions go to: Phil. Trans. R. Soc. Lond. ATo subscribe to 

This journal is © 1997 The Royal Society

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;355/1729/1609&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/355/1729/1609.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/


Rydberg states of triatomic hydrogen

B y C. H. Greene1 and J. A. Stephens2

1Department of Physics and JILA, University of Colorado,
Boulder, CO 80309-0440, USA

2International Atomic Energy Agency, P.O. Box 100, A-1400 Vienna, Austria

We describe a theoretical treatment of the Rydberg electron dynamics in triatomic
hydrogen, at a level that includes the full rotational and vibrational motions of
the residual ion. Preliminary results obtained very recently are also presented for
triatomic deuterium.

1. Introduction

The metastability of the B̃ 1s22p 2A′′2 state of triatomic hydrogen has led to a host
of spectroscopic studies of this intriguing molecule, which apparently possesses no
true bound states. Although the unstable nature of H3 limits its potential chemi-
cal usefulness, its study provides a potent training ground for both theoretical and
experimental calisthenics. The Rydberg spectroscopy of H3 has been studied in two
different regimes. The first regime involves relatively high orbital angular momenta
of the Rydberg electron. For these levels it is possible to treat the electron interac-
tion with the molecular ion as a weak perturbation. The second regime of low orbital
momenta, associated with penetrating Rydberg electron orbits that sample the core
non-perturbatively, requires greater sophistication in order to describe the spectrum
successfully. It is the theoretical description of this second, strongly interacting class
of Rydberg states of triatomic hydrogen, which forms the subject of the present
study.

A great leap forward in this field was pioneered by the work of Helm and co-workers
(Helm 1986; Lembo et al. 1989; Bordas et al. 1991; Bordas & Helm 1991), who formed
the aforementioned metastable state in a charge exchange collision between H+

3 and
neutral Cs. The metastable trihydrogen was next stimulated to reach higher energies
by a sequence of laser excitation steps. These reached bound and ionizing states
near the lower ionization thresholds. Three different types of theoretical efforts had
described aspects of the problem, prior to our efforts (Stephens & Greene 1994,
1995). Specifically, the physics of `-uncoupling for an electron in the field of this
ion with D3h symmetry was unravelled by Pan & Lu (1988), without treating the
vibrational motion. A crucial ab initio quantum chemical calculation by Nager &
Jungen (1982) determined the electronic energy surfaces for clamped nuclei in a
wide range of geometries.

Yet another crucial theoretical study was the work of Sobolewski & Domcke (1988),
Staib et al. (1990) and Staib & Domcke (1990), who treated Jahn–Teller (JT) inter-
actions in H3 by incorporating the Longuet–Higgins Hamiltonian into a multichannel
quantum defect (MQDT)-type treatment. This work was important for developing,
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1610 C. H. Greene and J. A. Stephens

in essence, the tools needed to perform a vibrational frame transformation that de-
scribes Jahn–Teller effects.

The aim of the work reviewed here, which was originally published in two articles
(Stephens & Greene 1994, 1995) has been to incorporate all three of these theoretical
elements into a unified treatment of a Rydberg electron that moves in the field of
a rotating, vibrating H+

3 ion. This full rovibronic frame transformation treatment
within an MQDT framework enables us to account semiquantitatively for a number
of features observed in the experimental spectra. We also present some preliminary
calculations of the photoionization of the 1s23s 2A′2 Rydberg state of D3, which can
also be prepared from its metastable B̃ 1s22p 2A′′2 state. We compare the predictions
to those of H3 over a range ca. 1400 cm−1 above the first ionic threshold for each
molecule, and discuss some expected differences between the isotopomers.

2. Frame transformation treatment

The starting point of this treatment is the realization that the exact solution can
be written accurately at sufficiently large Rydberg electron distances r > r0 in the
‘usual’ MQDT form in terms of a reaction matrix K as

Ψi′ = Ar−1
Nt∑
i=1

Φi(ω)(fi(r)δii′ − gi(r)Kii′). (2.1)

Here Φi(ω) represents a complete rovibronic state of the H+
3 core, including the elec-

tronic and spin portions of its wavefunction. Each channel index i = {v+Γ +N+K+}
includes all of the quantum numbers needed to fully characterize the core eigenstate
at energy Ei, including the D3h group symmetry label Γ +. The Coulomb wavefunc-
tions (fi, gi) in equation (2.1) are understood to be evaluated for the appropriate
Rydberg orbital angular momentum l = 1, which is restricted to p-waves only in this
paper as in Stephens & Greene (1994, 1995). The Coulomb functions are also under-
stood to be evaluated at an energy for the outermost electron which is constrained
by energy conservation to be εi = E − Ei. The elements of the reaction matrix
characterize the scattering among open channels having εi > 0 (which we denote
as iεP ) and, among the closed channels, having εi < 0 (which we denote as iεQ).
Multiple reflections of the Rydberg electron wavefunctions in the closed channels are
responsible for all resonances that arise in our calculations, as these are all Feshbach
resonances and not shape resonances. In practice, a ‘reaction volume radius’, r0,
and an appropriate number of channels, Nt, can be chosen such that equation (2.1)
essentially involves no approximation whatsoever.

The exact ab initio determination of the reaction matrix K, and of a corresponding
set of electric dipole amplitudes di, would prove to be a daunting task in general.
In circumstances such as the present one, fortunately, it can be determined through
a rovibronic frame transformation. This results in an enormous simplification of the
computational demands in this problem. The following is an abbreviated description
of the physics contained in the frame transformation appropriate to this system.
For a more complete exposition, the reader is referred to Stephens & Greene (1994,
1995).

The frame transformation approximation amounts to an assumption that the Ry-
dberg electron wavefunction changes ‘suddenly’ in some sense, as the electron moves
from the outer region (r > r0) into the inner region (r < r0). This approximation
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Rydberg states of triatomic hydrogen 1611

works well when two different sets of operators commute with the local Hamiltonian
in the inner and outer regions and when the time involved in crossing from one region
to another is short compared with the periods of all other motions. The inner opera-
tors are mutually compatible and thus their eigenstates remain ‘conserved’ while the
electron moves within the reaction volume. Likewise the outer operators are mutu-
ally compatible with each other and remain constants of motion while the Rydberg
electron moves in the purely Coulomb potential at r > r0. The ‘inside’ operators,
however, are not quantum mechanically compatible with the ‘outside’ operators. The
operators that are diagonal for long range Rydberg electron motion include the ionic
squared angular momentum operator N+2 with eigenvalues N+(N+ +1) and the set
of vibrational quantum numbers v1v

l
2 for an ionic molecular state of H+

3 . This com-
bination of quantum numbers is ‘conserved’ in the sense that (ignoring the weak
long range multipole interactions) the electron cannot exchange energy or angular
momentum with the ionic core at large distances. On the other hand, at small dis-
tances r, the Rydberg electron is moving with great speed owing to its large kinetic
energy acquired from the attractive Coulomb potential. In the small-r region, ac-
cordingly, molecular body-frame quantum numbers are more applicable. When the
ionic species has a definite symmetry, as in the present example where the ion pos-
sesses D3h symmetry, one of the quantum numbers will be a label for a particular
irreducible representation of the relevant point group symmetry. In the present ex-
ample of a purely p-wave electron, the symmetry quantum number is equivalent to
specification of Λ, the projection of the orbital angular momentum vector L onto the
symmetry axis ẑ normal to the plane containing the three nuclei. Consistent with
the notions in the Born–Oppenheimer approximation, the other quantum numbers
that are ‘conserved’ during the brief time in which the electron darts in and out of
the reaction zone are the instantaneous position vectors of the nuclei, Q.

The idea of ‘suddenness’ comes into the calculation through the notion that a
rapid traversal of an electron through the transition region (r ≈ r0) simply leads to
a projection of the internal eigenstates onto the external eigenstates. One factor of
the projection will be

〈N+K+|Λ〉(NfL) =
(

1 + δΛ0δK+0

1 + δK+0

)1/2(2N+ + 1
2Nf + 1

)1/2

〈NfΛ +K+|LΛ, N+K+〉,

which is the usual type of ‘rotational frame transformation amplitude’ that has en-
tered many other treatments of molecular Rydberg states (Greene & Jungen 1985;
Child & Jungen 1990; Fano 1970). That is to say, this amplitude describes the physics
of the l-uncoupling which occurs as a Rydberg electron roams farther and farther
from the ionic core and eventually ‘looks back’ and ‘sees’ the residual ionic core in a
specific rotational level N+K+. A second projection factor in the full frame transfor-
mation matrix is the amplitude for an ion in a specific vibrational level |v+Γ +〉(N+K+)

to have the nuclei at normal coordinate positions |Q〉 as the Rydberg electron en-
ters the core region (r < r0). This factor is just the ionic vibrational wavefunction
〈v+Γ +|Q〉(N+K+).

We turn now to a discussion of some of the more critical symmetry aspects for
this system. A crucial element of the present MQDT formulation is the use of a
body-frame, nuclear-geometry dependent reaction matrix KΛ,Λ′(Q) which is non-
diagonal in the electronic projections Λ,Λ′. Staib & Domcke (1990) have discussed
the Λ = ±1 form of this body-frame reaction matrix, employing the Longuet–Higgins
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(1961) parametrization of the JT Hamiltonian. This body-frame reaction matrix (or
JT Hamiltonian) would remain diagonal if the nuclei remained constantly in a D3h
configuration, because the group symmetry quantum numbers would then be exactly
conserved. Earlier diatomic frame transformation studies, in fact, assumed that the
body-frame reaction matrix was diagonal (Greene & Jungen 1985; Jungen & Dill
1980; Jungen & Atabek 1977). Our formulation describes non-D3h distortions and
all vibrational interactions within each non-degenerate Rydberg series (Λ = Λ′ = 0),
as well as JT interactions (Λ 6= Λ′) between doubly degenerate Rydberg series and
their associated continua. The body-frame matrix has the structure

KΛ,Λ′(Q) =


0 1 −1

0 tan[πµΛ=0(Q)] 0 0
1 0 δρ2 λρ exp[iφ]
−1 0 λρ exp[−iφ] δρ2

, (2.2)

which includes a key for the values of Λ associated with the appropriate channels.
Here ρ, φ are the radial and azimuthal coordinates of the doubly degenerate vibra-
tional modes which describe bending vibrations and λ, δ are the Jahn–Teller coupling
constants (Staib & Domcke 1990; Longuet-Higgins 1961). The radial and azimuthal
coordinates of the doubly degenerate vibrational modes are given in terms of normal
coordinatesQ and bond stretching coordinates ∆ri (i = 1, 2, 3) through the following
relations:

ρ = (Q2
a +Q2

b)
1/2, (2.3)

Qa = (2
3mpω0)1/2 1√

6
(∆r1 + ∆r2 − 2∆r3), (2.4)

Qb = (2
3mpω0)1/2 1√

2
(∆r1 −∆r2), (2.5)

and the fully symmetric vibrational coordinate is

Q1 = (1
3mpω0)1/2 1√

3
(∆r1 + ∆r2 + ∆r3), (2.6)

where ω0 = 2521.3 cm−1 is the fundamental vibrational frequency of H+
3 and mp is

the proton mass.
The Λ = ±1 terms in equation (2.2) are derived by expanding matrix elements

of the body-frame adiabatic Hamiltonian of a D3h molecule in powers of the normal
coordinates (Longuet-Higgins 1961). Equation (2.2) ignores quadratic terms in the
off-diagonal elements of the Λ = ±1 submatrix. The constant, zero-order term of
this expansion represents the Λ = Λ′ = ±1 quantum defect which has been omitted
from equation (2.2). Denoting this equilibrium quantum defect by µ0

e′ = µΛ=±1
(Q = 0), we can include it by using a phase-renormalized base pair (f̃i, g̃i) of Coulomb
wavefunctions (Eissner et al. 1969; Giusti-Suzor & Fano 1984). This base pair is given
by f̃i = fi cos(πµ0

e′)− gi sin(πµ0
e′) and g̃i = gi cos(πµ0

e′) + fi sin(πµ0
e′), where (fi, gi)

are the Coulomb wavefunctions defined in equation (2.1). (Alternatively, the quantum
defect µ0

e′ can be incorporated by adding a diagonal matrix, equation (2) of Staib &
Domcke (1990), to the short-range reaction matrix.) In the (f̃i, g̃i) basis of Coulomb
functions the form of the Λ = ±1 subblock of our K matrix, in matrix notation, is
then

K = (tan[πµ0
e′ ]I + K̃)(I − tan[πµ0

e′ ]K̃)−1, (2.7)
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where I is the unit matrix and K̃ is the Λ = ±1 submatrix in equation (2.2) in the
vibrational basis.

The frame transformation in equation (2.2) for matrix elements involving the
bending and asymmetric stretch vibrational states (Γ + = E′) uses rovibrational
states of the form (Spirko et al. 1985)

|N+K+M+v+E′〉 =
1√
2

(|N+K+M+E′b〉|v+E′a〉 − |N+K+M+E′a〉|v+E′b〉). (2.8)

These satisfy antisymmetry and total parity requirements and yield a real laboratory
frame K matrix. The |v+E′a〉 and |v+E′b〉 are degenerate components of vibrational
states with excitation v+, and |N+K+M+E′b〉 and |N+K+M+E′a〉 are symmetrized
(symmetric top) rotational basis functions:

|N+K+M+E′a〉 =
1√
2

(|N+K+M+〉+ (−1)N
++K+ |N+ −K+M+〉), (2.9)

|N+K+M+E′b〉 =
i(−1)σ√

2
(|N+K+M+〉 − (−1)N

++K+ |N+ −K+M+〉), (2.10)

where σ = K+(mod 3), i.e. σ = even for K+ = 2 + 3t, t = 0, 1, 2 . . . . For the
non-degenerate vibrational core states (Γ + = A′1), the rovibrational basis function
is i|N+0M+〉|v+A′1〉. We have chosen phase conventions for these functions identical
to those of Spirko et al. (1985). The overall symmetry of the rovibrational levels can
be specified by the quantum numbers G, U and s (K+ = G− U , U = ±1, s = ±1)
(Watson 1984). The total parity is specified by (−1)K

+
, where levels labelled ′ have

overall even parity and those labelled ′′ have odd parity.
The Λ = Λ′ = 0 contributions occurring in equation (2.2) relate to a quantum

defect matrix µ0Γ+v+,0Γ ′+v′+ . By initially constructing this matrix instead of the K
matrix, we bypass the numerically troublesome integration over possible poles of the
function tan[πµΛ=0(Q)] (weighted by products of vibrational wavefunctions). Next
we form its eigenvectors U0Γ+v+,α and eigenvalues µα and the K matrix elements
needed for the multichannel quantum defect calculation are obtained from

K0Γ+v+,0Γ+′v+′ =
∑
α

U0Γ+v+,α tan[πµα](UT)α,0Γ+′v+′ . (2.11)

The equilibrium value µ0
a′′2

= µΛ=0(Q = 0) of the out-of-plane quantum defect func-
tion enters our calculation as the leading term in a third-order Taylor expansion of
µΛ=0(Q) about Q = 0.

3. Discussion

In figure 1 we show an energy level diagram in the region of the lowest ionization
thresholds of H+

3 . Three regions are also indicated (‘open’ continuum, Beutler–Fano
region and discrete region) where Bordas et al. (1991) measured production of H+

3
ions by photoabsorption from the neutral 1s23s 2A′1, vi = 0, Ni = 1, Ki = 0 Rydberg
state. At particular photon energies neutral Rydberg states attached to rotation-
ally and vibrationally excited ionic core states are populated, which are observed
as autoionizing resonances (interlopers) in any region of the photoabsorption spec-
trum above the first ionization threshold. These resonances decay by rotational and
vibrational preionization by energy exchange during close collision of the Rydberg
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Figure 1. Vibrational energy levels of H+
3 in the energy range of relevance to the present study.

Here ν1 and ν2 indicate vibrational quanta in the symmetric and bending modes, ` is vibrational
angular momentum and N+, K+ are the rotational quantum numbers. From Stephens & Greene
(1995).

electron with the ion core. Below the first ionization threshold these states cannot
autoionize, but instead appear as local perturbations on otherwise normal Rydberg
series converging to this threshold.

In figure 2 we show our calculations of the summed (Nf = 0 + 2 results) oscillator
strength in the energy range above the lowest (N+,K+,Γ +) = (1, 0, 1A′1) ioniza-
tion threshold, compared to the spectrum measured by Bordas et al. (1991). The
theoretical spectrum has been convolved with a Gaussian detector function with
FWHM = 0.15 cm−1. In figure 2 we have labelled resonances a–l according to fig-
ure 3 of Bordas et al. (1991). Resonances labelled m–p by us are also indicated in
figure 2 and in figure 3, which enlarges the Beutler–Fano and near continuum por-
tion of these spectra. The experimental resonances labelled b and c were assigned
by Bordas et al. (1991) as autoionizing d (` = 2) Rydberg states, and accordingly
our calculation cannot predict these since we presently include only p waves. The
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Rydberg states of triatomic hydrogen 1615

Figure 2. Comparison of theoretical calculations with the experimental results of Bordas et al.
(1991), for the photoionization of the 1s23s 2A′1 state of H3. From Stephens & Greene (1995).

observed resonance a is assigned as due to an interloper state in the Nf = 2 branch.
The resonance labelled n is stronger and narrower in the theoretical prediction than
is seen in the experiment. It is possible that the resonance observed in the experi-
ment is predissociated by coupling to the repulsive ground state, as is the prominent
resonance observed in the discrete region near the (1, 0, 1A′1) threshold (discussed
below). The resonances labelled o, p, q, r, s and l in figure 2 are members of Rydberg
series converging to the lowest ionic core levels (2, 2, 1E′) and (3, 2, 1E′). For these
autoionizing states the Rydberg electron electronic angular momentum projections
have Λ = ±1 in Hund’s case (b), i.e. those whose electronic degeneracy is lifted
by the Jahn–Teller interaction. Due to the rotational ` uncoupling in this branch,
however, these states also contain some mixing with the Λ = 0 (a′′2) case (b) states.

Resonances predicted in the Nf = 0 final state (see figure 4a of Stephens & Greene
(1995), or the bottom of figure 5 below) decay solely from vibrational autoioniza-
tion, via energy exchange with the fully symmetric stretch modes. In figure 2, many
resonances in the Nf = 2 channel decay solely from non-vanishing vibrational K
matrix elements of the form 〈v+A′1|Qa + iQb|v+′E′〉. This interaction permits the
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Figure 3. Comparison of theoretical calculations with the experimental results of Bordas et
al. (1991), for the photoionization of the 1s23s 2A′1 state of H3. Two regions are shown on an
expanded scale. The crosses are the (normalized) experimental points of Bordas et al. (1991)
and the lines are present theory. From Stephens & Greene (1995).

Rydberg states attached to bending modes of the H+
3 ion to decay into the observed

(N+,K+,Γ +) = (1, 0, 1A′1) and (3, 0, 1A′1) continua, the strength of which is deter-
mined by the magnitude of the off-diagonal matrix elements in equation (2.2). (Here
and below, nΓ + indicates a particular vibrational state of symmetry Γ +, n = 1 being
the lowest in energy.) Inclusion of this Jahn–Teller coupling mechanism allows scat-
tering of the Rydberg electron between the Λ = 1 and Λ = −1 components at short
range in the e−–H+

3 complex and is essential to account for many of the resonances
observed by Bordas et al. (1991).

In figure 3 we show on an enlarged scale a comparison of theory and experiment
in the continuum region (top) of the p resonance and the Beutler–Fano region (bot-
tom) which extends from 12 867.6 to 13 297.5 cm−1. In this figure the experiment
was normalized to theory at the single photon energy 13 400 cm−1. The breadth,
depth and position of resonance p (and other members of this series) are in reason-
able agreement with experiment. These resonances consist of relatively high principal
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Figure 4. Comparison of theoretical calculations (b) with the experimental results (a) of Bordas
et al. (1991), for the discrete photoabsorption oscillator strengths excited from the 1s23s 2A′1
state of H3. In (b), Nf = 0 is shown as a dashed curve, while Nf = 2 is shown as a solid curve.
Using MQDT we convert the discrete spectrum into a continuous distribution (b) in order to
aid in the analysis.

quantum number perturbers (n ∼ 7, 8) with substantial mixing occurring between
closed-channel states attached to the (2, 2, 1E′) and (3, 2, 1E′) thresholds. In the ab-
sence of Jahn–Teller interactions, resonance p would have zero autoionization width,
i.e. be a true bound state. In the Beutler–Fano region, figure 3b, the excellent fit of
the rotational autoionization profiles to experiment relys on incorporating ab initio
dipole matrix elements for the 3s→ npz and 3s→ npx,y. We also predict perturbers
having both Nf = 0 (resonance m) and 2 (resonances a, o and n) final state angular
momentum, which appear to be partly resolved in the experiment, although addi-
tional theoretical and experimental studies are clearly needed to fully characterize
them.

In figure 4 we show a plot of our calculated oscillator strength below the first
ionization threshold of H+

3 and the experimental results of Bordas et al. (1991) in
the same region. Discretization of the continuous oscillator strength for the Nf = 0
and Nf = 2 final states leads to two Rydberg series converging to the first threshold.
This procedure has been discussed by Stephens & Greene (1995) (figure 9 of that
paper shows this discretization). Briefly, the two features at 12 810 and 12 860 cm−1

can be attributed to the same series of rotationally autoionizing interlopers, which
dominate photoionization in the Beutler–Fano region, and which converge to the
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Figure 5. Comparison of our theoretical photoionization spectra of D3 (preliminary, top) with
those for H3. These final states with total angular momentum Nf = 0 are excited from the
1s23s 2A′1 states of H3 and D3, respectively.

(3, 0, 1A′1) ionic threshold. Our calculation (figure 4b) predicts minima for these two
interlopers to occur at 12 797 and 12 858 cm−1, respectively. The weak Rydberg series
discernible between 12 815 and 12 850 cm−1 in figure 4a corresponds to the the Nf = 0
final state. Accordingly, discretization of the oscillator strength in figure 4b leads to a
Rydberg series which decreases in intensity as ca. n−3. The prominent experimental
window feature near 12840 cm−1 was attributed by Bordas et al. (1991) to a low-n
perturber which predissociates due to its coupling with the repulsive X̃ 1s22p 2E′

ground state of H3. The calculation in figure 4 is an enlarged MQDT calculation
using 52 rovibronic channels, which allows a low-n (n ∼ 3) perturber to appear
within ca. 100–150 cm−1 of the broad feature near 12 840 cm−1. This is seen near
12 843 cm−1 in figure 4b. As in H2, the low-n states of H3 in this energy range have a
large vibrational energy, and hence can predissociate rapidly. Our enlarged MQDT
calculation, despite the assumption of energy independence of the quantum defect,
nonetheless lends some support to this assignment. To fully account for this feature,
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Figure 6. Comparison of our theoretical photoionization spectra of D3 (preliminary, top) with
those for H3. These final states with total angular momentum Nf = 2 are excited from the
1s23s 2A′1 states of H3 and D3, respectively.

the present theory needs to be extended to incorporate predissociation within a
unified MQDT framework (Jungen 1984; Gao et al. 1993).

In figures 5 and 6 we show calculations for photoionization of the 1s23s 2A′1, vi = 0,
Ni = 1, Ki = 0 Rydberg state of D3 for total final state angular momenta Nf = 0
and 2. The ionization thresholds are labelled using the notation of figure 1 and the
autoionizing resonances for H3 are labelled as discussed previously. In the bottom
half of these figures we compare the D3 results with their H3 counterparts. These cal-
culations span a spectral region of ca. 1400 cm−1 above the v+ = 0, N+ = 1, K+ = 0
ionic threshold. For D3 we have used the JT coupling constants λ = 11 535 cm−1,
δ = 433 cm−1 and the fundamental vibrational frequency of ω0 = 1834.7 cm−1

(Watson et al. 1987). To obtain the JT constants for D3, we used the relations
λD3 = R1/2λH3 and δD3 = RδH3 , where

R = mpω
H+

3
0 /mdω

D+
3

0 .

(These follow from equations (2.4) and (2.5) and the definition of the JT coupling con-
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stant in terms of the body-frame Rydberg eigenvalue ε, λ = −∂ε/∂Qa = −∂ε/∂Qb.
An analogous relation for δ holds for second derivatives.) We determined the ion-
ization potential of the 1s23s 2A′1, vi = 0, Ni = 1, Ki = 0 Rydberg state relative to
the v+ = 0, N+ = 1, K+ = 0 ionic threshold to be 12 343 cm−1. This ionization po-
tential was calculated from a combination of available data (Dabrowski & Herzberg
1980; Figger et al. 1984, 1989; Ketterle et al. 1989). (Owing to imprecise data for the
3p-to-threshold term value (Figger et al. 1984), our ionization potential may be in
error by as large as ca. 100–500 cm−1.) We used the same number of ionic channels
(40 total) in the MQDT calculation as in our previous calculations on H3 (Stephens
& Greene 1995) and each spectrum contains 105 points over the indicated spectral
range.

Examining figures 5 and 6, it is clear that in proceeding from H3 to the species D3,
no simple modification of the spectrum is apparent, particularly in terms of resonance
positions and patterns. This is due to the different rotational structure of the ion
(the vibrational ground-state rotational spacings are 217 cm−1 and 430 cm−1 for D+

3
and H+

3 , respectively) and the isotopic (nuclear mass) dependence of the Jahn–Teller
coupling constants λ, δ. The most striking differences are the appearance of more
autoionizing resonances in the case of D3, due to the higher density of vibrational
ionic states, and the narrowing of autoionizing resonances in the Nf = 2 final state,
due to the weaker Jahn–Teller coupling in this heavier molecule. The narrowing of
resonances is most apparent for Rydberg states converging to the first or second
bending vibrational mode of the ion. For example, resonances of this type in D3 are
predicted in figure 6 to occur near 12 600, 12 950, 13 210 and 13 400 cm−1, labelled
‘A–D’ in the top of figure 6. Their widths are predicted to be substantially smaller
than the analogous type of H3 resonances. These resonances are labelled ‘p’, ‘q’, ‘r’
and ‘s’ in the bottom of figure 6 and have been discussed previously (Stephens &
Greene 1995).

One simplifying aspect in the spectrum of D3 compared to H3 should be the
weakening (or disappearance) of prominent features due to predissociation of low-n
perturbers, such as the example discussed above for H3. This possibility was pointed
out in the model calculations of H3 and D3 by Staib & Domcke (1990). This effect has
already been clearly observed in emission spectra proceeding from H3 to all deuter-
ated species, particularly in D3 for emission near the wavelength 7100 Å (Figger et
al. 1989; Ketterle et al. 1989).

It remains of interest to perform a detailed investigation of the Jahn–Teller cou-
pling mechanism in the D3 Rydberg states discussed above, and also to examine the
importance of predissociation in the Rydberg states of D3.

Work at the University of Colorado was supported by the National Science Foundation.
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